The pairing phase transition is investigated in hot even-even and even-odd P d isotopes such as 106 ≤ A ≤ 108 in a framework of a microscopic approach that takes into account the statistical fluctuations. In this aim, one considers the Modified BCS method (MBCS). The latter is extended to the odd system case, where the blocking effect is included. The model was applied to the evaluation of the thermal properties such as the excitation energy, entropy and heat capacity. The obtained results are compared on one hand to the usual finite temperature BCS (FTBCS) method and on the other hand to the experimental data. The obtained results allow to show that the thermal fluctuations smooth out the superfluid-normal (SN) phase transition observed in the usual FTBCS results. Moreover, in the region where the pairing phase transition occurs, the experimental data of thermal properties are better reproduced when statistical fluctuations are considered in MBCS method instead of the FTBCS approach.