Dies may have to be replaced for a number of reasons, such as changes in dimensions due to wear or plastic deformation, deterioration of the surface finish, breakdown of lubrication, and cracking or breakage. In this paper, die cooling methods are suggested to improve die service life with regards to wear and plastic deformation in a hot forging process. The yield strength of die decreases at higher temperatures and is dependent on hardness. Also, to evaluate die life due to wear, a modified Archard's wear model has been proposed by considering the thermal softening of die expressed in terms of the main tempering curve. This paper describes the effects of die cooling methods such as cooling hole and direct spray cooling on the life of finisher die during the hot forging of an automobile part. It is shown that the cooling hole method during hot forging is necessary for an effective die service life to be obtained.