Background
Effects of ceramic translucency, layer thickness, and substrate colour on the shade of lithium disilicate glass-ceramic restorations proved to be significant in several studies, however, quantitative, numerical results on the relationship between the colour difference and these parameters are still lacking. The purpose of this in vitro study was to quantitatively determine how the colour reproduction ability of a lithium disilicate glass-ceramic is affected by its translucency, layer thickness, and substrate colour.
Methods
Ceramic samples were prepared from A2 shade IPS e.max CAD blocks with high and low translucencies (HT and LT) in a thickness range of 0.5–2.5 mm (+/- 0.05 mm). Layered samples were acquired utilizing composite substrates in 9 shades; transparent try-in paste was used. The spectral reflectance of the specimens was assessed under D65 standard illumination with a Konica Minolta CM-3720d spectrophotometer. The CIEDE2000 colour difference (ΔE00) between two samples was analysed using perceptibility and acceptability thresholds set at 50:50%. Statistical analysis involved linear regression analysis and the Kruskal–Wallis test.
Results
An increase in the thickness of 0.5 mm reduced the ΔE00 of the HT samples to 72.8%, and that of the T samples to 71.1% (p < 0.0001). 7 substrates with HT and LT specimens had significantly different results from the mean (p < 0.05). A thickness of 0.5 mm is not sufficient to achieve an acceptable result at any level of translucency, while the low translucency ceramic at a thickness of 1.5 mm gave acceptable results, except for severely discoloured substrates (ND8 and ND9).
Conclusions
The colour reproduction ability of lithium disilicate glass-ceramics is significantly affected by their translucency, layer thickness, and 7 substrates out of 9 substrates examined.