In order to enhance wear resistance of cold work molds, WC−10Co4Cr coating was fabricated on Cr12MoV steel by laser cladding. The morphologies, chemical compositions, and phases of obtained coatings were analyzed using a scanning electron microscopy (SEM), energy disperse spectroscopy, and X−ray diffraction, respectively. The effect of laser power on the tribological performance was analyzed using a ball−on−plate friction machine, and the wear mechanism was also discussed. The results show that the WC−10Co4Cr coating is composed of WC and Co6W6C phases, and the average hardness of coating cross−sections fabricated at the laser power of 1200, 1500, and 1800 W was 1296, 1375, and 1262 HV0.5, respectively, in which that fabricated at the laser power of 1500 W is the highest among the three kinds of coatings. The average coefficients of friction of coatings fabricated at the laser power of 1200, 1500, and 1800 W are 0.61, 0.52, and 0.59, respectively; and the corresponding wear rates are 64.38, 35.38, and 123.92 μm3•N−1•mm−1, respectively, showing that the coating fabricated at the laser power of 1500 W has best friction reduction and wear resistance. The wear mechanism of WC−10Co4Cr coating is fatigue wear and abrasive wear, which is contributed to the increase of hard WC mass fraction.