Effect of Training Data Ratio and Normalizing on Fatigue Lifetime Prediction of Aluminum Alloys with Machine Learning
M. Matin,
M. Azadi
Abstract:It is critical to evaluate the estimation of the fatigue lifetimes for the piston aluminum alloys, particularly in the automotive industry. This paper investigates the effect of different normalization methods on the performance of the fatigue lifetime estimation using Extreme Gradient Boosting (XGBoost), as a supervised machine learning method. For this purpose, the dataset used in this study includes various physical and experimental inputs related to an aluminum alloy and the corresponding fatigue lifetime … Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.