This paper presents a semianalytical model to investigate the effect of Forchheimer's non-Darcy flow on the transient pressure behavior of a vertical well in an infinite homogeneous reservoir. The model uses the Forchheimer number to accurately quantify the non-Darcy flow in the reservoir through differentiating it from sandface-flow-rate-dependent skin factor, which is used to model the inertial-factor variation around the wellbore caused by perforation or formation damage/stimulation.Type curves are documented for both drawdown and buildup tests for the first time by use of the semianalytical model proposed. It is observed that when non-Darcy flow in reservoirs and/or across completions is considered, the dimensionless pressure-derivative curves of drawdown tests have a wider transition region with gentler slopes, while those of buildup tests exhibit a shorter transition region with steeper slopes, similar to the observations of Kim and Kang (1994), Spivey et al. (2004) and Camacho-V et al. (1996). In the radial-flow period, compared with the cases of non-Darcy flow only across completions, the cases with non-Darcy flow in reservoirs for drawdown and buildup tests possess dimensionless pressure derivatives moving downward more gradually and smoothly to approach 0.5 at decreasing gradients. In general, the pressure derivatives of drawdown tests are larger than those of buildup tests before they converge to 0.5.With this model, the skin factor for non-Darcy flow across the completion and the dimensionless Forchheimer number for non-Darcy flow in the reservoir can be estimated from a common drawdown or buildup test. Guidelines for interpreting field test data are presented. Several typical cases from the literature are analyzed, and better type-curve matches and more-reliable results are obtained.