The innate immune system is a defense mechanism that is of vital importance to our survival. However, excessive or unwanted activation of the innate immune system, which can occur in major surgery, sepsis, trauma, ischemia-reperfusion injury and autoimmune diseases, can lead to damage of the kidneys and other organs. Therefore, therapeutic approaches aimed at attenuating the innate immune response could have beneficial effects in these conditions. The vagus nerve exerts anti-inflammatory effects through the so-called cholinergic anti-inflammatory pathway. Since its discovery, numerous animal studies have shown beneficial effects of stimulation of this pathway in models of inflammatory diseases, either through (electrical) stimulation of the vagus nerve or pharmacological approaches. However, human data are very scarce. In this review, we present an overview of the molecular and anatomical bases of the cholinergic anti-inflammatory pathway, but mainly focus on human studies. We discuss the difficulties and drawbacks associated with investigating this pathway in humans, and finally, we provide future perspectives.