The removal and discharge of coal powders from coalbed methane wellbore is the key to maintaining continuous production. For this reason, based on the submerged jet theory, the force and migration starting conditions of coal powder particles deposited at the bottom of the coalbed methane well are analyzed by analyzing the cohesiveness of coal powders, and a model for the starting and migration of coal powders at the bottom of the well under submerged jet conditions is established; Considering the adhesion between coal dust, the adhesion coefficient is used to characterize the adhesion between particles, a mechanical model of coal dust particles deposited at the bottom of the well is established, and the corresponding calculation formula for the outlet flow rate of the coal dust cleaning nozzle is derived. The fluid mechanics parameters of the bottom of the well coal dust cleaning under different conditions are obtained, and the numerical simulation method is used to simulate the whole process of jet flushing of the bottom of the well coal dust deposited, and the effect of the bottom of the well jet flushing of coal dust deposits is analyzed, providing a theoretical basis for the bottom of the well coal dust flushing process.