In this study, juvenile Manchurian trout, Brachymystax lenok (initial weight: 6.43 ± 0.02 g, mean ± SE) were received for nine weeks with five types of diets prepared by gradually replacing the proportion of fish oil (FO) with linseed oil (LO) from 0% (LO0) to 25% (LO25), 50% (LO50), 75% (LO75), and 100% (LO100). The eicosapentaenoic (EPA) and docosahexaenoic (DHA) composition decreased with increasing inclusion level of LO (P < 0.05). With increasing LO inclusion level, triglyceride (TAG) content of serum increased significantly, however, there was a decrease in high-density lipoprotein cholesterol (HDL) (P < 0.05). LO substitution of FO up-regulated the gene expression level of lipid metabolism-related genes Fatty Acid Desaturases 6 (FAD6), Acetyl-Coa Carboxylase (ACCα), Sterol Regulatory Element Binding Protein 1 (SREBP-1), and Sterol O- Acyl Transferase 2 (SOAT2), and down-regulated the gene expression level of Peroxisome Proliferator-Activated Receptor a (PPARα) (P < 0.05). The SOD activities of both serum and liver in LO100 were significantly lower than in LO25 (P < 0.05). The CAT activity of the liver in LO100 was significantly lower than in LO0 and LO25 (P < 0.05). This study indicates that the Manchurian trout may have the ability to synthesize LC-PUFAs from ALA, and an appropriate LO in substitution of FO (<75%) could improve both the lipid metabolism and the oxidation resistance.