Currently, there is a lack of effective treatments for spinal cord injury (SCI), a debilitating medical condition associated with enduring paralysis and irreversible neuronal damage. Extradural decompression of osseous as well as soft tissue components has historically been the principal objective of surgical procedures. Nevertheless, this particular surgical procedure fails to tackle the intradural compressive alterations that contribute to secondary SCI. Here, we propose an early intrathecal decompression strategy and evaluate its role on function outcome, tissue sparing, inflammation, and tissue stiffness after SCI. Durotomy surgery significantly promoted recovery of hindlimb locomotor function in an open‐field test. Radiological analysis suggested that lesion size and tissue edema were significantly reduced in animals that received durotomy. Relative to the group with laminectomy alone, the animals treated with a durotomy had decreased cavitation, scar formation, and inflammatory responses at 4 weeks after SCI. An examination of the mechanical properties revealed that durotomy facilitated an expeditious restoration of the injured tissue's elastic rigidity. In general, early decompressive durotomy could serve as a significant strategy to mitigate the impairments caused by secondary injury and establish a more conducive microenvironment for prospective cellular or biomaterial transplantation.