Comprehensive information on the role of β-casein and plasminogen-plasmin (PG-PL) system in milk secretion of Murrah buffaloes during winter season is lacking, although effects of cold stress can be ameliorated to an extent by altering microclimate at farm level. Hence, this study was aimed to determine the changes in productivity along with PG-PL system of milk, plasma hormones and metabolites of buffaloes during winter (December-January) season under two different management systems. Average minimum temperature and wind chill index during this season were 7.02 and 12.74 °C respectively. Buffaloes were divided in two groups of six animals each: control and treatment, where treatment group animals were placed in-house with floor bedding of paddy straw and the control group animals in loose housing system without straw bedding. Physiological responses were recorded, and milk and blood samples were collected at weekly intervals for six-week experimental period. Under in-house management system, buffaloes experienced better comfort by alleviating environmental stress as their physiological responses such as respiration rate and pulse rate were significantly reduced (p < 0.01) as compared to the control, which subsequently resulted higher milk yield by 9.92% (p < 0.05). Analysis of milk samples revealed higher concentration of plasminogen (10.6 vs. 8.05 μg/ml; p < 0.01) and β-casein (p < 0.05), and lower plasmin level (0.299 vs. 0.321 μg/ml; p < 0.05) in buffaloes under treatment group. It was also found that plasma cortisol, glucose and non-esterified fatty acids levels were higher (p < 0.01) in control group as compared to the treatment animals by 13.6%, 8.14% and 12.6% respectively. However, milk composition, growth hormone, epinephrine and norepinephrine level in plasma were similar in both the groups. Hence, it may be concluded that provision of in-house shelter management with floor bedding of paddy straw during winter was effective to minimize environmental stress and improved milk production through manipulation of PG-PL system in buffaloes.