This study developed a sustainable low-carbon cementitious material using calcium carbide residue (CCR) as an alkali activator, combined with ground granulated blast furnace slag (GGBS) and fly ash (FA) to form a composite. The objective was to optimize the CCR dosage and the GGBS-to-FA ratio to enhance the unconfined compressive strength (UCS) of the composite, providing a viable alternative to traditional Portland cement while promoting solid waste recycling. Experiments were conducted with a water-to-binder ratio of 0.55, using six GGBS-to-FA ratios (0:10, 2:8, 4:6, 6:4, 8:2, and 10:0) and CCR contents ranging from 2% to 12%. Results indicated optimal performance at a GGBS-to-FA ratio of 8:2 and an 8% CCR dosage, achieving a peak UCS of 18.04 MPa at 28 days, with 79.88% of this strength reached within just 3 days. pH testing showed that with 8% CCR, pH gradually decreased over the curing period but increased with higher GGBS content, indicating enhanced reactivity. Microstructural analyses (XRD and SEM-EDS) confirmed the formation of hydration products like C-(A)-S-H, significantly improving density and strength. This study shows CCR’s potential as an effective and environmentally friendly activator, advancing low-carbon building materials and resource recycling in construction.