The heat treatment of aluminum alloys is very important in industries where low weight in combination with high wear resistance, good strength, and hardness are important. However, depending on their chemical composition, aluminum alloys are subjected to different mechanical and thermal treatments to achieve the most favorable properties. In this study, an Al-Zn-Mg alloy was heat-treated including solution annealing at 490 °C for 1 h with subsequent artificial aging at 130, 160, and 190 °C for 1, 5, and 9 h. The hardness (HV1) and abrasive wear resistance with three different abrasive grain sizes were measured for all samples. The highest hardness was measured for the samples artificially aged at 130 °C/5 h, 227 HV1, while the lowest hardness was measured for the samples aged at 190 °C/9 h. The highest and the lowest wear resistance was also observed for the same state, i.e., artificially aged at 130 °C/5 h and 190 °C/9 h, respectively. The critical abrasive grain size was detected for some samples, where a decrease in wear rate was observed with an increase in the abrasive grain size from the medium value to the largest. The Response Surface Methodology (RSM) was applied to demonstrate the influence of the input parameters on the material wear rate.