Twelve subjects wore an N95 filtering facepiece respirator (N95 FFR), one tight-fitting full facepiece powered air-purifying respirator (PAPR), two loose-fitting PAPRs, and one elastomeric/PAPR hybrid for 1 hr each during treadmill walking at 5.6 km/hr while undergoing physiological and subjective response monitoring. No significant interaction (p ≥ .05) was noted between the five respirators in heart rate, respiratory rate, oxygen saturation, transcutaneous carbon dioxide, and perceptions of breathing effort or discomfort, exertion, facial heat, and overall body heat. Respirator deadspace heat/humidity were significantly greater for the N95 FFR, whereas tympanic forehead skin temperatures were significantly greater for the hybrid PAPR. Temperature of the facial skin covered by the respirator was equivalent for the N95 FFR and hybrid PAPR, and both were significantly higher than for the other three PAPRs. Perception of eye dryness was significantly greater for a tight-fitting full facepiece PAPR than the N95 FFR and hybrid PAPR. At a low-moderate work rate over 1 hr, effects on cardiopulmonary variables, breathing perceptions, and facial and overall body heat perceptions did not differ significantly between the four PAPRs and a N95 FFR, but the tight-fitting, full facepiece PAPR increased perceptions of eye dryness. The two loose-fitting PAPRs and the full facepiece tight-fitting PAPR ameliorated exercise-induced increases in facial temperature, but this did not translate to improved perception of facial heat and overall body heat.