Copper based ternary and quaternary quantum confined nanostructures have attracted huge attention over recent years due to their potential applications in photonics, photovoltaics, imaging, sensing and other areas. However, anisotropic nanoheterostructures of this type are still poorly explored to date, despite numerous predictions of the distinctive optical properties of these highly fluorescent heavy metal free nanostructures. Here, we report new fluorescent multicomponent Cu–In–(Zn)–S/ZnS nanoheterostructures with a unique anisotropic “ice-cream cone” like morphology. These nanostructures have been prepared with a seeded growth technique and exhibit distinct photophysical properties with maximum emission in the visible range (≈ 640 nm) and long photoluminescence lifetimes (τaverage ≥ 300 ns). In depth time interval studies have been carried out to better understand the step by step growth mechanism of this distinct “ice-cream cone” like geometry. We have demonstrated that the crystal structure evolution from the zinc blende Cu–In–S core to the wurtzite “ice cream cone” like Cu–In–(Zn)–S/ZnS nanocrystals plays a key role in the origin of this morphology. This research opens new possibilities to produce unique fluorescent Cu-based multicomponent anisotropic heteronanostructures, while also offering a distinctive insight into the design of bespoke nanostructures, which could find a range of potential applications.