In chickens, high levels of dietary zinc cause molting, and the reproductive system undergoes complete remodeling concomitant to feather replacement. In the present study, the expression profiles of cytokines and chemokines were investigated in the ovary and oviduct of control hens and of hens induced to molt by zinc feeding. The zinc-induced feed-intake suppression, the changes in corticosterone levels, the immune cell populations in the reproductive tract, and the apoptosis of reproductive tissues were analyzed. The expression of mRNAs for interleukin-6 (IL-6), interferon-gamma (IFN-gamma), the avian ortholog of mammalian IL-8 (chCXCLi2), and a chicken MIP-1beta-like chemokine (chCCLi2) in the ovary and of mRNAs for IL-1beta, IL-6, IFN-gamma, transforming growth factor-beta2, chCXCLi2, and chCCLi2 in the oviduct were upregulated significantly during zinc-induced molting. A simultaneous feed-intake reduction was observed with higher expression of cytokines and chemokines. The results of the present investigation also suggested that the upregulation of corticosterone was closely associated with the increased expression of cytokines and chemokines. An increase in apoptosis within reproductive tissue during tissue regression was also noted. We had previously observed the upregulation of these cytokines expression in an earlier study (molting by feed withdrawal). However, the pattern and the level of expression were different among these two methods. These findings indicate that cytokines might be a common mediator of tissue regression during molting induced by diverse methods, although the pattern of induction is different. Thus, a high dose of dietary zinc seems to induce reproductive regression via the upregulation of cytokines and chemokines, the suppression of feed intake, and the increase in serum corticosterone, resulting finally in the apoptosis of reproductive tissues.