Abstract:To take advantage of the synergistic effects of Pt and Zr, a kind of Zr-doped, Pt-modified aluminide coating has been prepared by a hybrid process, first electroplating a Pt layer and then co-depositing Zr and Al elements by an above-the-pack process. The microstructure and isothermal oxidation behavior of the coating has been studied, using a Pt-modified aluminide coating as a reference. Results showed that the Zr-doped, Pt-modified aluminide coating was primarily composed of β-(Ni,Pt)Al phase, with small amounts of PtAl 2 -and Zr-rich phases dispersed in it. The addition of Zr diminished voids on the coating surface since Zr could hinder the growth of β-NiAl grains. It also helped to increase the spalling resistance of the oxide scale and reduce the oxidation rate, which made the Zr-doped, Pt-modified aluminide coating possess better oxidation resistance than the reference Pt-modified aluminide coating at the temperature of 1100 • C.