The generation of above-bandgap photovoltage, referred to as the anomalous photovoltaic effect (APV), is an extraordinary characteristic sought after property in bulk ferroelectric photovoltaic devices. Despite the fact that the relatively narrow bandgap of BiFeO3 (BFO) (2.7 eV) induces a comparatively larger generation of photocurrent than other ferroelectric photovoltaic, it falls short in producing an anomalous photovoltage (Eg ≪ Voc) and exhibits leaky ferroelectric hysteresis due to unavoidable oxygen vacancies. This work revealed a reduction in oxygen vacancies through the substitution of Ba(Fe1/2Nb1/2)O3 in BFO, leading to improved structural, morphological, synchrotron XPS, and electrical properties. This reduction in oxygen vacancies has resulted in an impressive above-bandgap photovoltage (APV) of 4.41 V for 80BFO–20BFN with greater ferroelectric polarization (Pr = 20.45 μC/cm2) observed at the co-existence of polar and non-polar phases. Moreover, both theoretical and experimental optical analyses have demonstrated a significant decrease in the bandgap to 1.92 eV, effectively extending the visible region close to 653 nm. As a result, a larger population of photoexcited charge carriers is generated, enabling the attainment of a high current density (Jsc) of 0.75 μA/cm2 under 100 mW/cm2 light irradiation.