We investigate the physics of the microwave response in YBa 2 Cu 3 O 7−δ , SmBa 2 Cu 3 O 7−δ and MgB 2 in the vortex state. We first recall the theoretical basics of vortex-state microwave response in the London limit. We then present a wide set of measurements of the field, temperature, and frequency dependences of the vortex state microwave complex resistivity in superconducting thin films, measured by a resonant cavity and by sweptfrequency Corbino disk. The combination of these techniques allows for a comprehensive description of the microwave response in the vortex state in these innovative superconductors. In all materials investigated we show that flux motion alone cannot take into account all the observed experimental features, neither in the frequency nor in the field dependence. The discrepancy can be resolved by considering the (usually neglected) contribution of quasiparticles to the response in the vortex state. The peculiar, albeit different, physics of the superconducting materials here considered, namely two-band superconductivity in MgB 2 and superconducting gap with lines of nodes in cuprates, give rise to a substantially increased contribution of quasiparticles to the field-dependent microwave response. With careful combined analysis of the data it is possible to extract or infer many interesting quantities related to the vortex state, such as the temperature-dependent characteristic vortex frequency and vortex viscosity, the field dependence of the quasiparticle density, the temperature dependence of the σ-band superfluid density in MgB 2