Many clinical procedures would benefit from direct and intuitive real-time visualization of anatomy, surgical plans, or other information crucial to the procedure. Three-dimensional augmented reality (3D-AR) is an emerging technology that has the potential to assist physicians with spatial reasoning during clinical interventions. The most intriguing applications of 3D-AR involve visualizations of anatomy or surgical plans that appear directly on the patient. However, commercially available 3D-AR devices have spatial localization errors that are too large for many clinical procedures. For this reason, a variety of approaches for improving 3D-AR registration accuracy have been explored. The focus of this review is on the methods, accuracy, and clinical applications of registering 3D-AR devices with the clinical environment. The works cited represent a variety of approaches for registering holograms to patients, including manual registration, computer vision-based registration, and registrations that incorporate external tracking systems. Evaluations of user accuracy when performing clinically relevant tasks suggest that accuracies of approximately 2 mm are feasible. 3D-AR device limitations due to the vergenceaccommodation conflict or other factors attributable to the headset hardware add on the order of 1.5 mm of error compared to conventional guidance. Continued improvements to 3D-AR hardware will decrease these sources of error.