A comparative investigation on the photophysical properties and solvation-related ICT dynamics of three push-pull compounds containing different donors including carbazole, triphenylamine and phenothiazine, was performed. The steady-state spectra and theoretical calculations show the charge transfers from the central donors to the acceptors at each side. The characterization of the extent of charge transfer was determined by various means, including estimation of the dipole moment, the electron density distribution of HOMO and LUMO, CDD and change in Gibb's free energy, which show the charge transfer strength to be in the order PDHP > BDHT > PDHC. This suggests that the electron-donating ability of the donor groups plays a crucial role in the charge transfer in these compounds. The TA data show the excited-state relaxation dynamics follow a sequential model: FC→ICT→ICT'→S , and are affected by the solvent polarity. The results presented here demonstrate that the compound with a higher degree of ICT characteristic interacts more strongly with stronger polar solvent molecules, which can accelerate the solvation and spectral evolution to lower energy levels. The A-π-D-π-A architectures with prominent ICT characteristics based on carbazole, triphenylamine and phenothiazine might be potential scaffolds for light-harvesting and photovoltaic devices. These results are of value for understanding structure-property relationships and the rational design of functional materials for photoelectric applications.