Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PurposeUsers' voluntary forwarding behavior opens a new avenue for companies to promote their brands and products on social networking sites (SNS). However, research on voluntary information disseminators is limited. This paper aims to bring an in-depth understanding of voluntary disseminators by answering the following questions: (1) What is the underlying mechanism by which some users are more enthusiastic to voluntarily forward content of interest? (2) How to identify them? We propose a theoretical model based on the Elaboration-Likelihood Model (ELM) and examine three types of factors that moderate the effect of preference matching on individual forwarding behavior, including personal characteristics, tweet characteristics and sender–receiver relationships.Design/methodology/approachVia Twitter API, we randomly crawled 1967 Twitter users' data to validate the conceptual framework. Each user’s original tweets and retweeted tweets, profile data such as the number of followers and followees and verification status were obtained. The final corpus contains 163,554 data points composed of 1,634 valid twitterers' retweeting behavior. Tweets produced by these core users' followees were also crawled. These data points constitute an unbalanced panel data and we employ different models — fixed-effects, random-effects and pooled logit models — to test the moderation effects. The robustness test shows consistency among these different models.FindingsPreference matching significantly affects users' forwarding behavior, implying that SNS users are more likely to share contents that align with their preferences. In addition, we find that popular users with lots of followers, heavy SNS users who author tweets or forward other-sourced tweets more frequently and users who tend to produce longer original contents are more enthusiastic to disseminate contents of interest. Furthermore, interaction strength has a positive moderating effect on the relationship between preference matching and individuals' forwarding decisions, suggesting that users are more likely to disseminate content of interest when it comes from strong ties. However, the moderating effect of perceived affinity is significantly negative, indicating that an online community of individuals with many common friends is not an ideal place to engage individuals in sharing information.Originality/valueThis work brings about a deep understanding of users' voluntary forwarding behavior of content of interest. To the best of our knowledge, the current study is the first to examine (1) the underlying mechanism by which some users are more likely to voluntarily forward content of interest; and (2) how to identify these potential voluntary disseminators. By extending the ELM, we examine the moderating effect of tweet characteristics, sender–receiver relationships as well as personal characteristics. Our research findings provide practical guidelines for enterprises and government institutions to choose voluntary endorsers when trying to engage individuals in information dissemination on SNS.
PurposeUsers' voluntary forwarding behavior opens a new avenue for companies to promote their brands and products on social networking sites (SNS). However, research on voluntary information disseminators is limited. This paper aims to bring an in-depth understanding of voluntary disseminators by answering the following questions: (1) What is the underlying mechanism by which some users are more enthusiastic to voluntarily forward content of interest? (2) How to identify them? We propose a theoretical model based on the Elaboration-Likelihood Model (ELM) and examine three types of factors that moderate the effect of preference matching on individual forwarding behavior, including personal characteristics, tweet characteristics and sender–receiver relationships.Design/methodology/approachVia Twitter API, we randomly crawled 1967 Twitter users' data to validate the conceptual framework. Each user’s original tweets and retweeted tweets, profile data such as the number of followers and followees and verification status were obtained. The final corpus contains 163,554 data points composed of 1,634 valid twitterers' retweeting behavior. Tweets produced by these core users' followees were also crawled. These data points constitute an unbalanced panel data and we employ different models — fixed-effects, random-effects and pooled logit models — to test the moderation effects. The robustness test shows consistency among these different models.FindingsPreference matching significantly affects users' forwarding behavior, implying that SNS users are more likely to share contents that align with their preferences. In addition, we find that popular users with lots of followers, heavy SNS users who author tweets or forward other-sourced tweets more frequently and users who tend to produce longer original contents are more enthusiastic to disseminate contents of interest. Furthermore, interaction strength has a positive moderating effect on the relationship between preference matching and individuals' forwarding decisions, suggesting that users are more likely to disseminate content of interest when it comes from strong ties. However, the moderating effect of perceived affinity is significantly negative, indicating that an online community of individuals with many common friends is not an ideal place to engage individuals in sharing information.Originality/valueThis work brings about a deep understanding of users' voluntary forwarding behavior of content of interest. To the best of our knowledge, the current study is the first to examine (1) the underlying mechanism by which some users are more likely to voluntarily forward content of interest; and (2) how to identify these potential voluntary disseminators. By extending the ELM, we examine the moderating effect of tweet characteristics, sender–receiver relationships as well as personal characteristics. Our research findings provide practical guidelines for enterprises and government institutions to choose voluntary endorsers when trying to engage individuals in information dissemination on SNS.
This study investigates Ogilvy, a leading organization in the United States, and its interest in utilizing social marketing strategies, artificial intelligence, and data mining technology to enhance the efficacy and efficiency of advertisement distribution on social media. The research draws on organizational information, secondary journals, and other secondary data sources to analyze the drawbacks of Ogilvy’s current advertisement distribution and design strategies. The study identifies key risks faced by Ogilvy, including unintentional participation in greenwashing activities, rising audience concerns about data security, and the increased risk of incorporating inappropriate content in advertisements. These risks and uncertainties have the potential to damage Ogilvy’s business reputation. To address these challenges, the article proposes three solutions based on current advertisement design and distribution strategies. These solutions aim to help Ogilvy mitigate potential risks and decrease uncertainties in future advertisement design and distribution for business clients. By implementing these strategies, Ogilvy can safeguard its reputation and maintain its leadership position in the advertising industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.