Tensor product states have proved extremely powerful for simulating the area-law entangled states of many-body systems, such as the ground states of gapped Hamiltonians in one dimension. The applicability of such methods to the dynamics of many-body systems is less clear: the memory required grows exponentially in time in most cases, quickly becoming unmanageable. New methods reduce the memory required by selectively discarding/dissipating parts of the many-body wavefunction which are expected to have little effect on the hydrodynamic observables typically of interest: for example, some methods discard fine-grained correlations associated with n-point functions, with n exceeding some cutoff * . In this work, we present a theory for the sizes of 'backflow corrections', i.e., systematic errors due to discarding this fine-grained information. In particular, we focus on their effect on transport coefficients. Our results suggest that backflow corrections are exponentially suppressed in the size of the cutoff * . Moreover, the backflow errors themselves have a hydrodynamical expansion, which we elucidate. We test our predictions against numerical simulations run on random unitary circuits and ergodic spin-chains. These results lead to the conjecture that transport coefficients in ergodic diffusive systems can be captured to a given precision with an amount of memory scaling as exp î O(log( ) 2 ) ó , significantly better than the naive estimate of memory exp O(poly( −1 )) required by more brute-force methods.