Motivated by apparent persistent large scale anomalies in the CMB we study the influence of fermionic degrees of freedom on the dynamics of inflaton fluctuations as a possible source of violations of (nearly) scale invariance on cosmological scales. We obtain the non-equilibrium effective action of an inflaton-like scalar field with Yukawa interactions (Y D,M ) to light fermionic degrees of freedom both for Dirac and Majorana fields in de Sitter space-time. The effective action leads to Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and a stochastic gaussian noise. We solve the Langevin equation in the super-Hubble limit implementing a dynamical renormalization group resummation. For a nearly massless inflaton its power spectrum of super Hubble fluctuations is enhanced, P(k; η) = (Majorana fermions, and η 0 is the renormalization scale at which the inflaton mass vanishes. The full power spectrum is shown to be renormalization group invariant. These corrections to the super-Hubble power spectrum entail a violation of scale invariance as a consequence of the coupling to the fermionic fields. The effective action is argued to be exact in a limit of large number of fermionic fields. A cancellation between the enhancement from fermionic degrees of freedom and suppression from light scalar degrees of freedom conformally coupled to gravity suggests the possibility of a finely tuned supersymmetry among these fields.