This paper introduces an investigation and implementation of integrated SIW system using Rogger RT/duriod 5880 substrate of ε r = 2.2,tan δ = 0.0009 and thickness 0.79 mmsimulated using HFSS. The proposed system is an integration of three main microwave devices: SIW divider/combiner taking a shape of wraparound rhombic with two isolated output ports, SIW phase shifter and two arrays of SIW hexagonal diamond of lamda shape slots fractal antenna. The divider operates efficiently in five wide bands [(9.7-11.36)/ (11.84-12.35)] GHz and [(13.5-14.05)/ (14.55-15.46)/ (15.62-16.7)] GHz for X and KU-Band applications respectively. The divider feeds two arrays of SIW fractal array antenna of hexagonal shape; one of them has a phase shifted input using SIW phase shifter. The proposed system is based on SIW technology to meet the requirement of multiple frequency bands for x-band missile guidance, KU-band satellite altimetry and wireless communication system applications. The measurement results have been obtained in laboratory using (R&S ZVB 20 vector network analyzer 10 MHz: 20 GHz) with agreement between about 11 resonance operating frequencies of the radiating antenna for both simulated and measured results. For one watt incident power the obtained antenna parameters were found to be 𝑆 11 = −43 𝑑𝐵, U=0.72 W/Str., accepted power=0.99 W, radiated power=0.98 W, absolute directivity, D =9.7, absolute gain, G =7.1 and radiation efficiency = 98% at f = 13.7 GHz as the most agreement frequency point between simulation and implementation results.