A study is made of the electrodynamic characteristics of an antenna having the form of a perfectly conducting, infinitesimally thin, narrow strip located at a plane interface of an isotropic medium and a cold collisionless magnetoplasma. The antenna is perpendicular to an external static magnetic field superimposed on the plasma medium and is excited by a time-harmonic given voltage. Singular integral equations for the antenna current are obtained in the case of an infinitely long strip conductor. Based on the solution of these equations, the current distribution and input impedance of the antenna are found for nonresonant and resonant frequency ranges of the magnetoplasma. The limits of applicability of an approximate approach employing the transmission line theory for determining the antenna characteristics are established. Within the framework of this approach, the results obtained are generalized to the case of a finite-length strip antenna.