2015
DOI: 10.1103/physrevb.91.155420
|View full text |Cite
|
Sign up to set email alerts
|

Effective-mass theory of collapsed carbon nanotubes

Abstract: Band structure is theoretically studied in partially flattened carbon nanotubes within an effectivemass scheme. Effects of inter-wall interactions are shown to be important in non-chiral nanotubes such as zigzag and armchair and can essentially be neglected in chiral nanotubes except in the close vicinity of non-chiral tubes. In fact, inter-wall interactions significantly modify states depending on relative displacement in the flattened region in non-chiral tubes and can convert semiconducting tubes into metal… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0
1

Year Published

2015
2015
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 117 publications
0
2
0
1
Order By: Relevance
“…The successful methods to alter the band structures of graphene-like 2D materials include controlling the thickness or the stacking geometry of 2D materials, [9][10][11] quantum confinement of charge carriers from 2D to 1D nanoribbons or nanotubes, [12][13][14][15][16] chemical doping, [17][18][19] strain, [20][21][22][23] and atomic modification. [24][25][26] First-principles calculations show that the band structure of monolayer CuSe has a gap above the Fermi level.…”
Section: Introductionmentioning
confidence: 99%
“…The successful methods to alter the band structures of graphene-like 2D materials include controlling the thickness or the stacking geometry of 2D materials, [9][10][11] quantum confinement of charge carriers from 2D to 1D nanoribbons or nanotubes, [12][13][14][15][16] chemical doping, [17][18][19] strain, [20][21][22][23] and atomic modification. [24][25][26] First-principles calculations show that the band structure of monolayer CuSe has a gap above the Fermi level.…”
Section: Introductionmentioning
confidence: 99%
“…2 层状材料典型地示出了不同的机械、电子和机械特性,光学和热传导特性,因此 有望设计新型纳米器件,特别是下一代电子和光电子应用。尽管之前的研究主要 集中在体相本来就是层状的二维原子晶体材料,如二硫化钼、黒磷等。随着材料 合成技术的进步, 也有少量的体相为非层状的二维材料被合成, 如硒化铜 (CuSe) 。 硒化铜是属于金属硫化物,其化合物广泛用于肖特基二极管、光学滤波器、超声 波导体、光电探测器、气体传感器和热电转换器 [14] 。Buffiere 等 [15] 发现金属硫属 化物半导体大多作为吸收层用于多晶薄膜太阳能电池中。Yang 等 [16] 使用 DFT 计 算发现煤燃烧后的主要排放物 Hg0 可以被物理吸附在 CuSe(001)表面上的 Cu 顶部位置,形成 Hg-Cu 合金,当遇到表面活性配体(如硒单体)时,其转化为稳 定的化学吸附硒化汞(HgSe) 。Masrat 等 [17] 发现过渡金属掺杂剂(Mn 和 Fe)对 CuSe 纳米结构的形态、磁性、光学和光催化行为有显著影响。过渡金属掺杂剂 的加入导致材料的光催化活性,将降解率从 59.4%提高到 64.5%。可以用于废水 处理和室温气体传感器。2020 年,Cheng 等 [18] 获得了一种新型的 CuSe/MoSe 2 2D/2D 面对面异质结光催化剂,它们在光催化降解和光电化学方面表现出优异的 性能,展示出金属硒化物在环境处理和氢能中的应用前景。 与体相本来就是层状的二维原子晶体材料相比,体相为非层状的二维材料晶 体的相关研究报导较少 [19][20][21] 。本文研究的单层 CuSe 属于后者,是一种新的蜂窝 状石墨烯类似物。单层 CuSe 由于本质上是具有金属性质的,不适合在电子器件 中应用,所以要使 CuSe 在电子器件得到应用,需要改变单层 CuSe 的电子结构, 让其具备半导体特性。改变类石墨烯二维材料的能带结构方法有很多,如化学掺 杂 [22][23][24] 、应力变化 [25][26][27] 、控制二维材料的厚度 [28,29] 和原子修饰的方法 [30][31][32]…”
unclassified
“…These deformations are predicted to be much stronger in CNTs partially covered by a metal contact, due to capillary forces [16]. While much efforts in exploring electronic structure in deformed nanotubes have been made [17][18][19][20] including effects of the external transverse electric field [21], little is known about how deformations produced by a metal modify the electronic structure and, as a result, the contact resistance.…”
mentioning
confidence: 99%