2014
DOI: 10.1155/2014/427203
|View full text |Cite
|
Sign up to set email alerts
|

Effective Parameter Dimension via Bayesian Model Selection in the Inverse Acoustic Scattering Problem

Abstract: We address a prototype inverse scattering problem in the interface of applied mathematics, statistics, and scientific computing. We pose the acoustic inverse scattering problem in a Bayesian inference perspective and simulate from the posterior distribution using MCMC. The PDE forward map is implemented using high performance computing methods. We implement a standard Bayesian model selection method to estimate an effective number of Fourier coefficients that may be retrieved from noisy data within a standard … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0

Year Published

2015
2015
2020
2020

Publication Types

Select...
5
1

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 15 publications
0
7
0
Order By: Relevance
“…Furthermore, EOE˛ D 0.25 and varOE˛ D 0.625. See in Algorithm 1 our MCMC method with the affine invariant moves defined by (18), (19), and (20).…”
Section: Markov Chain Monte Carlo Designmentioning
confidence: 99%
See 2 more Smart Citations
“…Furthermore, EOE˛ D 0.25 and varOE˛ D 0.625. See in Algorithm 1 our MCMC method with the affine invariant moves defined by (18), (19), and (20).…”
Section: Markov Chain Monte Carlo Designmentioning
confidence: 99%
“…Point move (18) Translate (19) Alpha move (20) 4: Compute the energy ". tC1 /, where tC1 is obtained from point cloud tC1 P,˛w ith alpha shape algorithm.…”
Section: Algorithm 1 Point Cloud Affine Invariant Random Walk Metropomentioning
confidence: 99%
See 1 more Smart Citation
“…Previous work in 3D light holographic settings also applied MCMC sampling to infer the location, size and refractive index of single spherical particles [19]. In [50][51][52], scattering from single 2D sound-soft objects is considered. Here, the objects are placed at known locations and inference is based on far-field, small-noise, complex data.…”
Section: Introductionmentioning
confidence: 99%
“…(a), (b). Palafox et al[16] introduced this procedure to estimate the boundary of a smooth sound obstacle from far field data. A detailed description of the algorithm is as follows: Spline interpolation of the non-convex hull of a point cloud in 2D Data: Let us Q = {p i } m t=1 a set of m points within the domain of the problem, Q ⊂ G ⊂ R 2 , and α a positive real number.…”
mentioning
confidence: 99%