A basic problem of micromechanics is analysis of one inclusion in the infinite matrix subjected to a homogeneous remote loading. A heterogeneous medium with the bond-based peridynamic properties (see Silling, J Mech Phys Solids 48:175-209, 2000) of constituents is considered. At first, volumetric boundary conditions are set up at the external boundary of a final domain obtained from the original infinite domain by truncation. One also considers a periodization approach (for a dilute concentration of inclusion). At last, a group of the iteration methods is considered where the displacement field is decomposed as linear displacement corresponding to the homogeneous loading of the infinite homogeneous medium and a perturbation field introduced by one inclusion. This perturbation field is found by the iteration method for entirely infinite sample with an initial approximation given by a driving term which has a compact support. The form of the mentioned solutions is adapted for subsequent incorporation into one or another micromechanical approach for peristatic composite materials. The methods are demonstrated by numerical examples for 1D case. A convergence of numerical results for the peristatic composite bar to the corresponding exact evaluation for the local elastic theory is shown.