The Xenopus genus includes several members of aquatic frogs native to Africa but is perhaps best known for the species Xenopus laevis and Xenopus tropicalis. These species were popularized as model organisms from as early as the 1800s and have been instrumental in expanding several biological fields including cell biology, environmental toxicology, regenerative biology, and developmental biology. In fact, much of what we know about the formation and maturation of the vertebrate renal system has been acquired by examining the intricate genetic and morphological patterns that epitomize nephrogenesis in Xenopus. From these numerous reports, we have learned that the process of kidney development is as unique among organs as it is conserved among vertebrates. While development of most organs involves increases in size at a single location, development of the kidney occurs through a series of three increasingly complex nephric structures that are temporally distinct from one another and which occupy discrete spatial locales within the body. These three renal systems all serve to provide homeostatic, osmoregulatory, and excretory functions in animals. Importantly, the kidneys in amphibians, such as Xenopus, are less complex and more easily accessed than those in mammals, and thus tadpoles and frogs provide useful models for understanding our own kidney development. Several descriptive and mechanistic studies conducted with the Xenopus model system have allowed us to elucidate the cellular and molecular mediators of renal patterning and have also laid the foundation for our current understanding of kidney repair mechanisms in vertebrates. While some species-specific responses to renal injury have been observed, we still recognize the advantage of the Xenopus system due to its distinctive similarity to mammalian wound healing, reparative, and regenerative responses. In addition, the first evidence of renal regeneration in an amphibian system was recently demonstrated in Xenopus laevis. As genetic and molecular tools continue to advance, our appreciation for and utilization of this amphibian model organism can only intensify and will certainly provide ample opportunities to further our understanding of renal development and repair.