We study the Dirac equation coupled to scalar and vector Klein-Gordon fields in the limit of strong coupling and large masses of the fields. We prove convergence of the solutions to those of a cubic non-linear Dirac equation, given that the initial spinors coincide. This shows that in this parameter regime, which is relevant to the relativistic mean-field theory of nuclei, the retarded interaction is well approximated by an instantaneous, local self-interaction. We generalize this result to a many-body Dirac-Fock equation on the space of Hilbert-Schmidt operators.