2021
DOI: 10.21123/bsj.2021.18.4(suppl.).1465
|View full text |Cite
|
Sign up to set email alerts
|

Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach

Abstract: The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Opti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(8 citation statements)
references
References 23 publications
0
8
0
Order By: Relevance
“…Figure 1 below shows the flow diagram for the comprehensive review process. Reference Title Year Country [11] Developing a mobile-based application system to accelerate the efficiency of the course rescheduling process Malaysia [12] Modified and hybridised bi-objective firefly algorithms for university course scheduling Thailand [13] A general mathematical model for university courses timetabling: Implementation to a public university in Malaysia Malaysia [14] A genetic algorithm for the real-world university course timetabling problem Malaysia [15] Grouping and heuristics for a multi-stage class timetabling system Malaysia [16] Hybrid whale optimization algorithm for solving timetabling problems of ITC 2019 Indonesia [17] Investigation of heuristic orderings with a perturbation for finding feasibility in solving real-world university course timetabling problem Malaysia [18] Lecturer-course assignment model in national joint courses program to improve education quality and lecturers' time preference Indonesia [19] A compromise programming for multi-objective task assignment problem Vietnam [20] A hybrid of heuristic orderings and variable neighbourhood descent for a real-life university course timetabling problem Malaysia [21] An SHO-based approach to timetable scheduling: a case study Vietnam [22] Application of genetic algorithm to optimize lecture scheduling based on lecturers' teaching day willingness Indonesia [23] Automation and optimization of course timetabling using the iterated local search hyper-heuristic algorithm with the problem domain from the 2019 international timetabling competition Indonesia [24] Class scheduling framework using decorator and facade design pattern Philippines [25] Effective solution of university course timetabling using particle swarm optimizer based hyper heuristic approach Malaysia [26] Lecturer teaching scheduling that minimizes the difference of total teaching load using goal programming Indonesia [27] Multi-agent class timetabling for higher educational institutions using Prometheus platform Philippines [28] Particle swarm optimisation variants and its hybridisation ratios for generating cost-effective educational course timetables Thailand [29] Stemming the educational timetable problems Indonesia [18] University course timetabling model in joint courses program to minimize the number of unserved requests Indonesia [30] An effective hybrid local search approach for the post enrolment course timetabling problem Malaysia...…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Figure 1 below shows the flow diagram for the comprehensive review process. Reference Title Year Country [11] Developing a mobile-based application system to accelerate the efficiency of the course rescheduling process Malaysia [12] Modified and hybridised bi-objective firefly algorithms for university course scheduling Thailand [13] A general mathematical model for university courses timetabling: Implementation to a public university in Malaysia Malaysia [14] A genetic algorithm for the real-world university course timetabling problem Malaysia [15] Grouping and heuristics for a multi-stage class timetabling system Malaysia [16] Hybrid whale optimization algorithm for solving timetabling problems of ITC 2019 Indonesia [17] Investigation of heuristic orderings with a perturbation for finding feasibility in solving real-world university course timetabling problem Malaysia [18] Lecturer-course assignment model in national joint courses program to improve education quality and lecturers' time preference Indonesia [19] A compromise programming for multi-objective task assignment problem Vietnam [20] A hybrid of heuristic orderings and variable neighbourhood descent for a real-life university course timetabling problem Malaysia [21] An SHO-based approach to timetable scheduling: a case study Vietnam [22] Application of genetic algorithm to optimize lecture scheduling based on lecturers' teaching day willingness Indonesia [23] Automation and optimization of course timetabling using the iterated local search hyper-heuristic algorithm with the problem domain from the 2019 international timetabling competition Indonesia [24] Class scheduling framework using decorator and facade design pattern Philippines [25] Effective solution of university course timetabling using particle swarm optimizer based hyper heuristic approach Malaysia [26] Lecturer teaching scheduling that minimizes the difference of total teaching load using goal programming Indonesia [27] Multi-agent class timetabling for higher educational institutions using Prometheus platform Philippines [28] Particle swarm optimisation variants and its hybridisation ratios for generating cost-effective educational course timetables Thailand [29] Stemming the educational timetable problems Indonesia [18] University course timetabling model in joint courses program to minimize the number of unserved requests Indonesia [30] An effective hybrid local search approach for the post enrolment course timetabling problem Malaysia...…”
Section: Discussionmentioning
confidence: 99%
“…Iqbal et al, [25] proposed a Particle Swarm Optimiser-based Hyper Heuristic (HH-PSO) to solve UCTP with PSO work as a higher-level methodology that employs low-level heuristics to find the best solution. According to the results of the study, the proposed low-level heuristic is effective for organising events during the initial phase.…”
Section: Hybridisationmentioning
confidence: 99%
See 1 more Smart Citation
“…The PSO algorithm will retain two sets of information, the personal optimum and the global optimum, to guide the particle-in search during the run 16 . This search method has a stronger local search capability compared with the CS's double stochastic solution as a difference search method.…”
Section: Integration With Pso Operatormentioning
confidence: 99%
“…Heuristic methods have been applied to enormous problems such as 20, 21 . The paper is arranged as follow.…”
mentioning
confidence: 99%