Nilgirianthus ciliatus
, extensively exploited for its pharmacological properties, is now classified as vulnerable. In vitro micropropagation offers a sustainable approach for ecological conservation and rational utilization of this biodiversity resource. This study aimed to reduce endophytes during in vitro propagation and isolating antimicrobial-resistant endophytes from
N. ciliatus
by employing various concentrations and exposure times of Plant Preservative Mixture (PPM). Optimal results were observed when nodal explants treated with 0.3% PPM for 8 h, followed by inoculation in Murashige and Skoog (MS) medium supplemented with 3 mg/L 6-benzylaminopurine (BAP) and 0.3% PPM. This protocol achieved 82% shoot regeneration with minimal endophytic contamination, suggesting that the duration of explant exposure to PPM significantly influences endophyte reduction. Two antimicrobial-resistant endophytes were isolated and identified as
Bacillus cereus
and
Acinetobacter pittii
through 16S rDNA sequencing. These endophytes exhibited plant growth-promoting characteristics, including amylolytic, proteolytic, lipolytic activities, indole-3-acetic acid production, phosphate solubilization, and stress tolerance. In vivo application of these endophytes as bioinoculants to
N. ciliatus
not only improved growth parameters but also significantly increased the levels of pharmacologically important compounds, squalene, and stigmasterol, as confirmed by High-performance thin-layer chromatography (HPTLC). This study demonstrates that PPM is a promising alternative for sustainable micropropagation of
N. ciliatus
. Furthermore, it highlights the potential of antimicrobial-resistant endophytes as bioinoculants to improve growth and medicinal value, offering a sustainable solution for conservation and large-scale cultivation of this species.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12870-024-05582-8.