For efficient mechanical system optimization, a new two-point approximation method is presented. Unlike the conventional two-point approximation methods such as TPEA, T ANA, TANA-l, TANA-2 and TANA-3, this introduces the shifting level into each exponential intervening variable to avoid the lack of definition of the conventional exponential intervening variables due to zero-or negative-valued design variables. Then a new quadratic approximation whose Hessian matrix has only diagonal elements of different values is proposed in terms of these shifted exponential intervening variables. These diagonal elements are determined in a closed form that corrects the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second -order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the previous point. Finally, in order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve six typical design problems. These optimization results are compared with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.