Polyploidy represents a useful tool for increasing marketability of floriculture crops. The efficacy of 250 μM colchicine [0.01% (w/v)] as a means of inducing polyploidy in six South African Watsonia species (W. borbonica subsp. ardernei, W. humilis, W. laccata, W. lepida, W. pulchra, and W. vanderspuyiae), as determined through high-resolution flow cytometry, is reported. Exposure to colchicine during imbibition and as 24-, 48-, or 72-h pulse treatments for in vitro-germinated seeds resulted in seedlings with increased ploidy, reaching a maximum of 60% induction after the 72-h pulse treatment. The greatest proportions of induced individuals from both the pre- and post-germination exposure treatments were of mixed ploidy. These mixoploids were induced in five species. Non-chimeric tetra- and octaploids were produced in low frequencies only for W. vanderspuyiae during radicle-pulse exposure of 24 and 48 h. Increasing colchicine exposure at radicle emergence manifested as aberrant phenotypic expression and was typified by a reduction in leaf length and rooting capacity in vitro coupled with overall slowed growth. In vitro regeneration and multiplication is easily achievable for the genus and should allow for the capture and refinement of desirable polyploid tissues.