Peatlands provide multiple ecosystem services, including extensive carbon sequestration and storage, yet many peatlands have been degraded or destroyed. Peatlands' carbon storage capacity is connected to inherently low decomposition rates, causing the buildup of organic matter. This pattern could be explained by waterlogged conditions that reduce the amount of available oxygen for the decomposer community, a low pH that inhibits bacterial decomposition, or colder temperatures lowering metabolic rates. This study focused on edge effects on decomposition in the transition zone (lagg) between Sphagnum bogs and the surrounding forest, with the expectation that decomposition is lowest in the bog and highest in the forest but with a mix of factors causing intermediate decomposition rates near the bog edge. Transitional decomposition rates were measured across six bogs in central Sweden during the summer of 2021, following the Tea Bag Index. Three 20-m transects, each containing seven pairs of tea bags, were buried across the margins of each bog, centered at the edge of the Sphagnum moss. Soil moisture content, pH, and plant composition were also recorded at each burial site, and temperature loggers placed evenly among four of the bogs. Our results