2022
DOI: 10.1016/j.autcon.2022.104314
|View full text |Cite
|
Sign up to set email alerts
|

Effectiveness of neural networks and transfer learning for indoor air-temperature forecasting

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 18 publications
(8 citation statements)
references
References 28 publications
0
7
0
1
Order By: Relevance
“…Validation primarily focuses on temperature and building energy consumption due to the continuous interplay between indoor air temperature and energy demands (Chong et al, 2021). Key parameters influencing simulation results include weather data (Beagon et al, 2020), building envelope, internal gains, zone set points, and HVAC system settings (heating and cooling set points) (Al-Shargabi et al, 2022;Afroz et al, 2018;Beagon et al, 2020;Bellagarda et al, 2022). Internal gains encompass occupant profiles and density, lighting, equipment, and operational schedules, significantly impacting energy end-users (Koulamas et al, 2018).…”
Section: Sasbementioning
confidence: 99%
“…Validation primarily focuses on temperature and building energy consumption due to the continuous interplay between indoor air temperature and energy demands (Chong et al, 2021). Key parameters influencing simulation results include weather data (Beagon et al, 2020), building envelope, internal gains, zone set points, and HVAC system settings (heating and cooling set points) (Al-Shargabi et al, 2022;Afroz et al, 2018;Beagon et al, 2020;Bellagarda et al, 2022). Internal gains encompass occupant profiles and density, lighting, equipment, and operational schedules, significantly impacting energy end-users (Koulamas et al, 2018).…”
Section: Sasbementioning
confidence: 99%
“…A few examples of application of the transfer learning method are listed herein: the detection of faults in chillers [6,7], the forecasting of building energy demand [8,9], the control of HVAC systems [10,11], the detection of faults in solar photovoltaic modules [12], the detection of gas path faults across the turbine fleet [13], the forecasting of indoor air temperature [14], and the building information extraction [15]. The detailed literature review of applications of transfer learning to HVAC systems is beyond the scope of this paper.…”
Section: Transfer Learningmentioning
confidence: 99%
“…Bellagarda et al [14] tested different TL methods applied to neural network models for the forecasting of indoor air temperature in existing buildings. The results indicate that the implementation of TL contributed to an extension of the forecast horizon by 13.4 hours on average.…”
Section: Transfer Learningmentioning
confidence: 99%
“…Para (Bellagarda et al, 2022), las Tecnologías de la Información y Comunicaciones brindan oportunidades innovadoras para que la previsión e integración de nuevas políticas de control, sin embargo, dichas tecnologías deben superar desafíos como la falta de datos históricos precisos necesarios para las predicciones. La aplicabilidad de redes neuronales innovadoras para predicciones de series temporales, han permitido con efectividad establecer un pronóstico de la temperatura del aire interior, mostrando niveles constantes de precisión y comodidad.…”
Section: Trabajos Relacionadosunclassified