Because many pesticide handlers persist in wearing and reusing conventional workclothes, a renewable functional finish that enhances the pesticide-protective qualities of fabrics would be useful. This study investigated the ability of starch to act as a pesticide trap, preventing transfer and increasing removal by laundering, and the effect of carboxymethyl cellulose on release of pesticide in laundry. The retention and distribution of methyl parathion (MeP) on 65% polyester/35% cotton fabric was studied with four finishes: starch and carboxymethyl cellulose (CMC) as nondurable finishes; durable press resin (DP) and durable press/carboxymethyl cellulose (DP/CMC) as durable finishes. Starching with an add-on of 8% (w/w) effectively reduced the area of contamination and enhanced the removal of methyl parathion from polyester/cotton fabrics. Residual pesticide values for CMC, DP, and DP/CMC finishes were similar to that of the unfinished fabric. While distribution profiles of methyl parathion throughout the yarn and fiber structures were similar for all the finishes, lower concentrations of pesticide were observed on the cotton fibers from the starched fabric. Starch reduced the pesticide transferring by rubbing from both 100% cotton and 65% polyester/cotton fabrics. These studies support the intriguing theory that starch can act as a pesticide trap on the fabric surface to decrease pesticide transfer and to enhance pesticide removal. Extensive penetration studies, field studies, and additional investigation of fiber, yarn, and fabric parameters are needed to further quantify the effects of starch.