Familial hypercholesterolemia (FH) is an inherited condition resulting in increased risk of premature cardiovascular disease. This risk can be reduced with early diagnosis and treatment, but it can be challenging to identify individuals with FH. Cascade screening, the most efficient and cost‐effective identification method, requires FH patients to communicate with their at‐risk family and encourage them to pursue screening. Beyond FH, patients with conditions increasing disease risk to family members report barriers to the communication process such as insufficient knowledge of the condition and discomfort informing relatives. We conducted a pilot study of a genetic counseling intervention incorporating behavior‐change principles from motivational interviewing (MI) and the extended parallel process model (EPPM) to help parents of children with FH overcome these barriers and improve cascade screening rates for FH. Of the 13 participants who completed the intervention and post‐intervention surveys, 6 reported contacting and/or screening additional relatives. A large effect size in increasing communication and screening was observed (η2 = 0.20), with the mean percent of at‐risk relatives contacted rising from 33% to 45%, and the mean percent screened rising from 32% to 42%. On average, 2.23 new relatives were contacted and 2.46 were screened, per participant, by the end of the study. Direct content analysis revealed that despite the open‐ended nature of the goal‐setting process, participant goals fell into two categories including those who set goals focused on communicating with and screening family members (n = 9) and those who set goals only focused on managing FH (n = 4). Overall, the communication and screening rates reported after the intervention were higher than previous observations in adult FH populations. These results suggest this EPPM/MI genetic counseling intervention could be a useful tool for increasing communication and cascade screening for FH. With further research on goal‐setting techniques, the intervention could be refined and replicated to identify more individuals affected by FH or modified for use with other actionable genetic conditions.