Oxidative stress and inflammation are implicated as cardinal mechanisms of neuronal death following stroke. In the present study citalopram (Cit) was investigated in a 2 h middle cerebral artery occlusion (MCAo) model of stroke in male Wistar rats. Pretreatment, posttreatment (Post Cit) and pre plus posttreatment (Pre + Post Cit) with Cit were evaluated for its neuroprotective effect. In pretreatment protocol, effect of Cit at three doses (2, 4, and 8 mg/kg) administered i.p., 1 h prior to MCAo was evaluated using neurological deficit score (NDS), motor deficit paradigms, and cerebral infarction 24 h post-MCAo. In posttreatment and pre plus posttreatment protocol, the effective dose of Cit (4 mg/kg) was administered i.p., 0.5 h post-reperfusion (Post Cit) only, and 1 h prior to MCAo and again at 0.5 h post-reperfusion (Pre + Post Cit), respectively. These two groups were assessed for NDS and cerebral infarction. Though NDS was significantly reduced in both Post Cit and Pre + Post Cit groups, significant reduction in cerebral infarction was evident only in Pre + Post Cit group. Infarct volume assessed by magnetic resonance imaging was significantly attenuated in Pre + Post Cit group (10.6 ± 1.1%) compared to MCAo control group (18.5 ± 3.0%). Further, Pre + Post Cit treatment significantly altered 17 metabolites along with attenuation of malondialdehyde, reduced glutathione, matrix metalloproteinases, and apoptotic markers as compared to MCAo control. These results support the neuroprotective effect of Cit, mediated through amelioration of oxidative stress, inflammation, apoptosis, and altered metabolic profile.