Urban green space (UGS) has been recognized as a key factor in enhancing the urban ecosystem balance, particularly in arid areas. It is often considered an effective means to mitigate the urban heat island (UHI) effect. In this study, the reference comparison method was utilized to optimize the process of nighttime lighting data; the random forest classification method was employed to extract UGS data; and the radiative transfer method was applied in land surface temperature (LST) inversion. Additionally, moving window analysis was conducted to assess the robustness of the results. The objective of this research was to analyze the spatial distribution characteristics of UGS and LST and to explore their bivariate local spatial autocorrelations by calculating four landscape metrics, including the aggregation index (AI), edge density (ED), patch density (PD), and area-weighted mean shape index (Shape_am). It was found that the distribution of UGS in the study area was uneven, with higher temperatures in the eastern and western regions and lower temperatures in the central and southern regions. The results also revealed that ED, PD, and Shape_am were negatively correlated with LST, with correlation coefficients being −0.469, −0.388, and −0.411, respectively, indicating that UGS in these regions were more effective in terms of cooling effect. Conversely, AI was found to be positively correlated with LST (Moran’ I index of 0.449), indicating that surface temperatures were relatively higher in regions of high aggregation. In essence, the fragmented, complex, and evenly distributed green patches in the study area provided a better cooling effect. These findings should persuade decision makers and municipal planners to allocate more UGS in cities for UHI alleviation to improve quality of life and enhance recreational opportunities.