Elastic, fracture and deformation behavior of B2 FeAl intermetallics modified by ternary additions as well as Al/Fe vacancy defects and anti-sites have been investigated based on density functional theory (DFT). Formation enthalpy indicates that ternary additions Sc, Y, Mo and W have a preference for Al site. While Fe site is more easily replaced by ternary Cu and Zn. Moreover, vacancy and antisite defects can be stable in FeAl. Pugh criteria ([Formula: see text] ratio), Poisson’s ratio [Formula: see text] and Cauchy pressure show that Sc, Y, Mo, W and Al vacancy (Al anti-site by Fe atom) can effectively improve the ductility of FeAl. Dislocation emission and micro-cracks propagation show that the improved ductility is due to the promoted dislocation emission but suppressed micro-cracks propagation. Bonding analyses reveal that the improved ductility is mainly own to the weakened the covalent interactions and strengthened the metallic interactions.