In laboratory-bred rodent populations, intraspecific variation in circadian system organization is a known cause of individual variation in reproductive photoresponsiveness. The authors sought to determine whether circadian system variation accounted for individual variation in reproductive photoresponsiveness in a single, highly genetically variable population of Peromyscus leucopus recently derived from the wild. Running-wheel activity patterns of male and female mice, aged 70 to 90 days, from artificially selected lines of reproductively photoresponsive (R) and nonresponsive (NR) lines were monitored under short-day photoperiod (8 h light, 16 h dark), long-day photoperiod (16 h light, 8 h dark), and constant darkness (DD). NR mice displayed a significantly longer mean free-running period (24.08 h) in DD compared with R mice (23.75 h), due in large part to a difference between NR and R females (24.25 h vs. 23.74 h, respectively). All other entrainment characteristics (alpha, phase angle of activity) under short days, long days, and DD were similar between R and NR mice. Variation in freerunning period and entrainment characteristics has been shown to affect photoresponsiveness in other rodent species by altering the manner in which the circadian system interprets short days. To determine whether variation in photoresponsiveness in P. leucopus is due to differences in free-running period instead of variation downstream from the central circadian clock in the pathway controlling photoresponsiveness, the authors exposed young R and NR mice to DD and measured the effect on reproductive organ development. If variation in free-running period affected how the circadian system of mice interpreted short days, then both R and NR mice exposed to DD should have exhibited a delay in gonadal development. Only R mice exhibited pubertal delay in DD. NR mice exhibited large paired testes, paired seminal vesicles, paired ovaries, and uterine weight typical of mice nonresponsive to short days, whereas R mice exhibited reproductive organ weight typical of mice responsive to short days. These data suggest that despite significant differences in free-running period between R and NR mice, individual variation in photoresponsiveness is not due to differences in how the circadian systems of R and NR mice interpret the LD cycle.