In the winter and summer North Pacific Subtropical Countercurrent region, the atmospheric responses to 20,000+ mesoscale oceanic eddies (MOEs) are examined using satellite and reanalysis data from 1999 to 2013. The composite results indicate that surface wind speed, cloud, and precipitation anomalies are positively correlated with sea surface temperature anomalies in both seasons. The surface wind speed anomalies and convective precipitation anomalies show dipolar structures centering on MOEs in winter and on unipolar structures in summer. In both seasons, the vertical mixing mechanism plays an obvious role in the atmospheric responses to MOEs. In addition, the distributions of sea level pressure anomalies in winter reflects the effects of the pressure adjustment mechanism. Due to the seasonal variations in the atmospheric background state and the MOEs, the sensitivities of surface wind speeds, clouds, and precipitation responses to MOEs in summer are over 30% higher than those in winter.