Alendronate (4-amino-1-hydroxybutylidene bisphosphonate) is a novel amino bisphosphonate that is being developed for the treatment of osteolytic bone disorders such as osteoporosis. As part of a 2-year carcinogenicity study, we investigated the morphologic and biomechanical effects of long-term alendronate (ALN) therapy, given throughout skeletal growth, maturation, and aging, on rat vertebrae and femora. Three treatment groups, receiving either deionized water, low- (1.00 mg/kg), or high-dose (3.75 mg/kg) ALN, were given daily oral treatment for 105 weeks. Results from mechanical tests indicate that ALN therapy (in males) increased the vertebral ultimate compressive load by 96% in the high- and 51% in the low-dose groups when compared with controls. ALN similarly increased the male ultimate femoral bending load by 59% in the high- and 31% in the low-dose groups. Vertebrae and femora from female rats treated with both high- and low-dose ALN also failed at significantly higher loads than controls, but no differences were seen between low- and high-dose groups. Morphologic analysis of both male and female vertebrae revealed a dose-dependent increase in area fraction of bone. Rats receiving high-dose ALN had a greater area fraction of bone than those receiving low doses. Both groups were greater than controls. Thus, the administration of ALN resulted in increased femoral cortical bending load when compared with control animals, as well as increased vertebral ultimate compressive load commensurate with a dose-related preservation of vertebral bone.(ABSTRACT TRUNCATED AT 250 WORDS)