The Savage Municipal Well Superfund site consists of an eastward-directed plume of volatile organic compounds, principally tetrachloroethylene (PCE), in alluvium and glacial sand and gravel in the Souhegan River valley, just south of the river and about 4 kilometers west of the town of Milford, N.H. Sampling of monitoring wells at the site has helped delineate the extent of the plume and has determined that some contaminant has migrated into the underlying crystalline bedrock, including bedrock north of the river within 200 meters of a nearby residential development that was constructed in 1999. Borehole geophysical logging has identified a northeast preferential trend for bedrock fractures, which may provide a pathway for the migration of contaminant under and north of the Souhegan River. The current study investigates the bedrock geologic setting for the site, including its position relative to known regional geologic structures, and compiles new strike and dip measurements of joints in exposed bedrock to determine if there are dominant trends in orientation similar to what was found in the boreholes. The site is located on the northwestern limb of a northeast-trending regional anticlinorium that is southeast of the Campbell Hill fault zone. The Campbell Hill fault zone defines the contact between granite and gneiss of the anticlinorium and granite and schist to the northwest and is locally marked by lenses of massive vein quartz, minor faults, and fracture zones that could potentially affect plume migration. The fault zone was apparently not intercepted by any of the boreholes that were drilled to delineate the contaminant plume and therefore passes to the north of the northernmost borehole in the vicinity of the new residential area. Joints measured in surface exposures indicate a strong preferred direction of strike to the north-northeast corroborating the borehole data and previous outcrop and geophysical studies. The north-northeast preferred direction matches the direction of elongation of the cone of depression formed during a pump test of the bedrock wells and could explain a potential pathway for the migration of contaminant north of the river.