Free transverse oscillations of an elastically mounted circular cylinder with low mass-damping are studied with a focus on the effects of the cylinder end condition on structural oscillations and vortex shedding. While the top end of the cylinder pierces the free surface of a water channel, the lower end is changed to have three end conditions: an attached endplate, an endplate unattached from the cylinder at varying gaps and no endplate. All three response branches are examined, with the reduced velocity sweeping
$2 \le {U^\ast } \le 15$
(corresponding to a Reynolds number range of
$2000 \le Re \le 14\;700$
). Although the cylinder oscillations are unaffected by the end condition in the initial and upper branches, they show significant dependency on the end condition in the lower branch. When the endplate is attached or unattached with a small gap, the upper-to-lower branch transition occurs with a sudden decrease in oscillation amplitude, after which the lower branch maintains a near-constant amplitude. For larger gaps or no endplate, with increasing reduced velocity, the oscillation amplitude decreases gradually from its peak without any discernible sign of transition between the upper and lower branches. The three-dimensional effects of the gap are the basis for these differences in oscillation. Atop the strong tip vortex, a low-magnitude streamwise velocity region develops downstream of the cylinder, which delays upper-to-lower branch transition over the cylinder span that sees this low-velocity region. With increasing gap, this low-velocity region and the delay in transition spread over larger spanwise extents, forcing the overall body to oscillate at larger amplitudes.