Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The effects of action observation (AO) on motor performance can be modulated by instruction. The effects of two top-down aspects of the instruction on motor performance have not been fully resolved: those related to attention to the observed task and the incorporation of motor imagery (MI) during AO. In addition, the immediate vs. 24-h retention test effects of those instruction's aspects are yet to be elucidated. Fortyeight healthy subjects were randomly instructed to: (1) observe reaching movement (RM) sequences toward five lighted units with the intention of reproducing the same sequence as fast and as accurate as possible (Intentional + Attentional group; AO+At);(2) observe the RMs sequence with the intention of reproducing the same sequence as fast and as accurate as possible and simultaneously to the observation to imagine performing the RMs (Intentional + attentional + MI group; AO+At+MI); and (3) observe the RMs sequence (Passive AO group). Subjects' performance was tested before and immediately after the AO and retested after 24 h. During each of the pretest, posttest, and retest, the subject performed RMs toward the units that were activated in the same order as the observed sequence. Occasionally, the sequence order was changed by beginning the sequence with a different activated unit. The outcome measures were: averaged response time of the RMs during the sequences, difference between the response time of the unexpected and expected RMs and percent of failures to reach the target within 1 s. The averaged response time and the difference between the response time of the unexpected and expected RMs were improved in all groups at posttest compared to pretest, regardless of instruction. Averaged response time was improved in the retest compared to the posttest only in the Passive AO group. The percent of failures across groups was higher in pretest compared to retest. Our findings suggest that manipulating top-down aspects of instruction by adding attention and MI to AO in an RM sequence task does not improve subsequent performance more than passive observation. Off-line learning of the sequence in the retention test was improved in comparison to posttest following passive observation only.
The effects of action observation (AO) on motor performance can be modulated by instruction. The effects of two top-down aspects of the instruction on motor performance have not been fully resolved: those related to attention to the observed task and the incorporation of motor imagery (MI) during AO. In addition, the immediate vs. 24-h retention test effects of those instruction's aspects are yet to be elucidated. Fortyeight healthy subjects were randomly instructed to: (1) observe reaching movement (RM) sequences toward five lighted units with the intention of reproducing the same sequence as fast and as accurate as possible (Intentional + Attentional group; AO+At);(2) observe the RMs sequence with the intention of reproducing the same sequence as fast and as accurate as possible and simultaneously to the observation to imagine performing the RMs (Intentional + attentional + MI group; AO+At+MI); and (3) observe the RMs sequence (Passive AO group). Subjects' performance was tested before and immediately after the AO and retested after 24 h. During each of the pretest, posttest, and retest, the subject performed RMs toward the units that were activated in the same order as the observed sequence. Occasionally, the sequence order was changed by beginning the sequence with a different activated unit. The outcome measures were: averaged response time of the RMs during the sequences, difference between the response time of the unexpected and expected RMs and percent of failures to reach the target within 1 s. The averaged response time and the difference between the response time of the unexpected and expected RMs were improved in all groups at posttest compared to pretest, regardless of instruction. Averaged response time was improved in the retest compared to the posttest only in the Passive AO group. The percent of failures across groups was higher in pretest compared to retest. Our findings suggest that manipulating top-down aspects of instruction by adding attention and MI to AO in an RM sequence task does not improve subsequent performance more than passive observation. Off-line learning of the sequence in the retention test was improved in comparison to posttest following passive observation only.
Muscle weakness is a critical problem facing many older adults. Interventions targeting nervous system plasticity may show promise in enhancing strength. The purpose of this study was to examine the acute effects of action observation on muscular strength characteristics and corticospinal excitability in older adults. Isometric wrist flexion strength characteristics and corticospinal excitability of the first dorsal interosseous (FDI) were measured in 14 older adults (mean age = 73 years) in response to observation of (1) STRONG contractions of the hand/wrist, (2) WEAK contractions of the hand/wrist, and (3) a CONTROL condition. Results from repeated measures analyses of variance (ANOVAs) indicated that rate of torque development at 200 ms (RTD200) significantly decreased from PRE to POST observation for CONTROL and WEAK, but not STRONG. No other ANOVAs were significant. However, effect sizes indicated that maximal voluntary contraction (MVC) peak torque showed moderate declines following WEAK ( d = − 0.571) and CONTROL ( d = − 0.636), but not STRONG ( d = 0.024). Similarly, rate of torque development at 30 (RTD30), 50 (RTD50), and 200 (RTD200) ms showed large declines from PRE to POST after WEAK and CONTROL, but small changes following STRONG. FDI motor-evoked potential (MEP) amplitude tended to increase over time, but these results were variable. There was a pronounced effect from PRE to 8MIN ( d = 0.954) during all conditions. Action observation of strong contractions may exert a preservatory effect on muscular strength. More work is needed to determine whether this is modulated by increased corticospinal excitability. The study was prospectively registered (ClinicalTrials.gov Identifier: NCT03946709).
In this paper, we discuss a variety of ways in which practising motor actions by means of motor imagery (MI) can be enhanced via synchronous action observation (AO), that is, by AO + MI. We review the available research on the (mostly facilitatory) behavioural effects of AO + MI practice in the early stages of skill acquisition, discuss possible theoretical explanations, and consider several issues related to the choice and presentation schedules of suitable models. We then discuss considerations related to AO + MI practice at advanced skill levels, including expertise effects, practical recommendations such as focussing attention on specific aspects of the observed action, using just-ahead models, and possible effects of the perspective in which the observed action is presented. In section “Coordinative AO + MI”, we consider scenarios where the observer imagines performing an action that complements or responds to the observed action, as a promising and yet under-researched application of AO + MI training. In section “The dual action simulation hypothesis of AO + MI”, we review the neurocognitive hypothesis that AO + MI practice involves two parallel action simulations, and we consider opportunities for future research based on recent neuroimaging work on parallel motor representations. In section “AO + MI training in motor rehabilitation”, we review applications of AO, MI, and AO + MI training in the field of neurorehabilitation. Taken together, this evidence-based, exploratory review opens a variety of avenues for future research and applications of AO + MI practice, highlighting several clear advantages over the approaches of purely AO- or MI-based practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.