Objectives
Pain associated with orthodontic tooth movement reportedly reduces periodontal ligament tactile sensation. However, the mechanism associated with the central nervous system remains unclear. This study was conducted by measuring somatosensory evoked magnetic fields (SEFs) during mechanical stimulation of teeth as they were being moved by separator elastics. Findings clarified the effects of pain on periodontal ligament tactile sensation during orthodontic tooth movement.
Materials and Methods
Using magnetoencephalography, SEFs were measured during the application of mechanical stimuli to the mandibular right first molars of 23 right-handed healthy participants (0 h). Separator elastics were subsequently inserted into the mesial and distal interdental portions of the mandibular right first molars. The same mechanical stimuli were applied again 24 h later while the SEFs were measured (24 h). After each SEF measurements, pain was also evaluated using the Visual Analog Scale (VAS).
Results
The VAS values were significantly higher at 24 h than at 0 h (p < 0.05). No significant difference in the peak latencies was found between those obtained at 0 h and 24 h, but the intensities around 40.0 ms in the contralateral hemisphere were significantly lower at 24 h than at 0 h (p < 0.01).
Conclusions
Pain associated with orthodontic tooth movement might suppress periodontal ligament tactile sensation in the primary somatosensory cortex.
Clinical Relevance
Pain associated with orthodontic tooth movement might affect periodontal ligament sensation, consequently causing discomfort during occlusion.