Waterborne polyurethane, renowned for its lightweight properties, excellent insulation capabilities, and corrosion resistance, has found extensive application in fields such as construction, automotive, leather, and thermal insulation. Nevertheless, during operational usage, waterborne polyurethane materials, akin to other polymeric substances, are susceptible to oxidative aging manifestations like yellowing, cracking, and diminished mechanical performance, significantly curtailing their utility. Consequently, the synthesis of yellowing-resistant polyurethane assumes pivotal significance. This study integrates dynamic reversible reactions into the synthesis process of polyurethane by introducing the dynamic reversible compound 2-hydroxyethyl disulfide as a chain extender, alongside the incorporation of a UV absorber to enhance the polyurethane’s resistance to yellowing. When the disulfide bonds absorb heat, they undergo cleavage, yielding thiols that spontaneously recombine into disulfide bonds at ambient temperatures, allowing for the continuous breaking and reformation of disulfide bonds to absorb heat. Concurrently, in collaboration with the UV absorber, the detrimental effects of ultraviolet radiation on the polyurethane material are mitigated, thereby augmenting its resistance to yellowing. This study scrutinizes the positioning of UV absorber addition, the quantity of UV absorber, and the molar ratio of 1,4-butanediol to 2-hydroxyethyl disulfide, characterizing the functional groups of polyurethane through infrared and Raman spectroscopy. It is observed that the successful preparation of yellowing-resistant polyurethane is achieved, and evaluations on the modified polyurethane through color difference, tensile, and centrifugal tests reveal that the optimal yellowing resistance is attained by adding a UV absorber at a mass fraction of 1% to 3% prior to chain extension, resulting in a color change grade of 2, denoting slight discoloration. Simultaneously, the other properties of polyurethane exhibit relative stability. Notably, when the molar ratio of 1,4-butanediol to 2-hydroxyethyl disulfide is 3:2, the overall performance of the polyurethane remains stable, with exceptional yellowing resistance capabilities attaining a color change grade of 2.